Pattern Discovery Techniques for Music Audio

نویسندگان

  • Roger B. Dannenberg
  • Ning Hu
چکیده

Human listeners are able to recognize structure in music through the perception of repetition and other relationships within a piece of music. This work aims to automate the task of music analysis. Music is “explained” in terms of embedded relationships, especially repetition of segments or phrases. The steps in this process are the transcription of audio into a representation with a similarity or distance metric, the search for similar segments, forming clusters of similar segments, and explaining music in terms of these clusters. Several transcription methods are considered: monophonic pitch estimation, chroma (spectral) representation, and polyphonic transcription followed by harmonic analysis. Also, several algorithms that search for similar segments are described. These techniques can be used to perform an analysis of musical structure, as illustrated by examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melodic Pattern Extraction in Large Collections of Music Recordings Using Time Series Mining Techniques

We demonstrate a data-driven unsupervised approach for the discovery of melodic patterns in large collections of Indian art music recordings. The approach first works on single recordings and subsequently searches in the entire music collection. Melodic similarity is based on dynamic time warping. The task being computationally intensive, lower bounding and early abandoning techniques are appli...

متن کامل

Mirex 2014 Entry: Music Segmentation Techniques and Greedy Path Finder Algorithm to Discover Musical Patterns

This extended abstract describes the pattern discovery submission to MIREX 2014 of an algorithm that uses music segmentation (or music structure analysis) techniques and a refined greedy method in order to identify the repetitive musical patterns of a given music piece, either represented symbolically or with an actual audio file. We obtain a harmonic representation of the input and compute the...

متن کامل

Bridging the Audio-Symbolic Gap: The Discovery of Repeated Note Content Directly from Polyphonic Music Audio

Algorithms for the discovery of musical repetition have been developed in audio and symbolic domains more or less independently for over a decade. In this paper we combine algorithms for multiple F0 estimation, beat tracking, quantisation, and pattern discovery, so that for the first time, the note content of motifs, themes, and repeated sections can be discovered directly from polyphonic music...

متن کامل

Melodic pattern extraction in large collections of music recordings using time series mining techniques

We demonstrate a data-driven unsupervised approach for the discovery of melodic patterns in large collections of Indian art music recordings. The approach first works on single recordings and subsequently searches in the entire music collection. Melodic similarity is based on dynamic time warping. The task being computationally intensive, lower bounding and early abandoning techniques are appli...

متن کامل

Music Pattern Discovery with Variable Markov Oracle: A Unified Approach to Symbolic and Audio Representations

This paper presents a framework for automatically discovering patterns in a polyphonic music piece. The proposed framework is capable of handling both symbolic and audio representations. Chroma features are post-processed with heuristics stemming from musical knowledge and fed into the pattern discovery framework. The pattern-finding algorithm is based on Variable Markov Oracle. The Variable Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002